12LED点阵实验
LED点阵介绍
LED点阵是由发光二极管排列组合的显示器件,在我们日常生活的电器中随处可见,被广泛应用于汽车报站器,广告屏等。如下所示:
通常应用较多的是88点阵,然后使用多个88点阵可组成不同分辨率的LED点阵显示屏,比如1616点阵可以使用4个88点阵构成。因此理解了88LED点阵的工作原理,其他分辨率的LED点阵显示屏都是一样的。这里以88LED点阵来做介绍。其内部结构图如下所示:
8*8 点阵共由64个发光二极管组成,且每个发光二极管是放置在行线和列线的交叉点上,当对应的某一行置1电平,某一列置0电平,则相应的二极管就亮;如要将第一个点点亮,则1脚接高电平a脚接低电平,则第一个点就亮了;如果要将第一行点亮,则第1脚要接高电平,而(a、b、c、d、e、f、g、h )这些引脚接低电平,那么第一行就会点亮;如要将第一列点亮,则第a脚接低电平,而(1、2、3、4、5、6、7、8)接高电平,那么第一列就会点亮。由此可见,LED点阵的使用也是非常简单的。
硬件设计
本实验使用到硬件资源如下:
16*16LED点阵模块
74HC595模块
从上图中可以看出,该 ...
11GPIO扩展(串转并)-74HC595
74HC595芯片介绍
74HC595是一个8位串行输入、并行输出的位移缓存器,其中并行输出为三态输出(即高电平、低电平和高阻抗)。芯片管脚及功能说明如下:
引脚功能:
15和1到7QA-QH:并行数据输出
9脚QH非:串行数据输出
10脚SCLK非(MR):低电平复位引脚
11脚SCK(SHCP): 移位寄存器时钟输入
12脚RCK(STCP): 存储寄存器时钟输入
13脚G非(OE): 输出有效
14脚SER(DS) : 串行数据输入
74HC595是具有8位移位寄存器和一个存储器,三态输出功能。移位寄存器和存储器是单独的时钟。数据在SCK的上升沿输入,在RCK的上升沿进入到存储器中。如果两个时钟连在一起,则移位寄存器总是比存储器早一个脉冲。移位寄存器有一个串行输入(DS),和一个串行输出(Q7非),和一个异步的低电平复位,存储寄存器有一个并行8位的,具有三态的总线输出,当MR为高电平,OE为低电平时,数据在SHCP上升沿进入移位寄存器,在STCP上升沿输出到并行端口。
硬件设计
本实验使用到硬件资源如下:
16*16LED点阵模块
74HC595模块
...
10矩阵按键实验
矩阵按键介绍
独立按键与单片机连接时,每一个按键都需要单片机的一个 I/O 口,若某单片机系统需较多按键,如果用独立按键便会占用过多的 I/O 口资源。单片机系统中 I/O 口资源往往比较宝贵,当用到多个按键时为了减少 I/O 口引脚,引入了矩阵按键。
无论是独立键盘还是矩阵键盘,单片机检测其是否被按下的依据都是一样的,也就是检测与该键对应的 I/O 口是否为低电平。独立键盘有一端固定为低电平,此种方式编程比较简单。而矩阵键盘两端都与单片机 I/O 口相连,因此在检测时需编程通过单片机 I/O 口送出低电平。检测方法有多种,最常用的是行列扫描和线翻转法。
行列扫描法:先送一列为低电平,其余几列全为高电平(此时我们确定了列数),然后立即轮流检测一次各行是否有低电平,若检测到某一行为低电平(这时我们又确定了行数),则我们便可确认当前被按下的键是哪一行哪一列的,用同样方法轮流送各列一次低电平,再轮流检测一次各行是否变为低电平,这样即可检测完所有的按键,当有键被按下时便可判断出按下的键是哪一个键。当然我们也可以将行线置低电平,扫描列是否有低电平。从而达到整个键盘的检测。
线翻转法: ...
09独立按键实验
按键介绍
按键是一种电子开关,使用时轻轻按开关按钮就可使开关接通,当松开手时,开关断开。开发板上使用的按键及内部简易图如下图所示
按键管脚两端距离长的表示默认是导通状态,距离短的默认是断开状态,如果按键按下,初始导通状态变为断开,初始断开状态变为导通。
通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,电压信号如下图所示
由于机械点的弹性作用,按键开关在闭合时不会马上稳定的接通,在断开时也不会一下子断开,因而在闭合和断开的瞬间均伴随着一连串的抖动。抖动时间的长短由按键的机械特性决定的,一般为 5ms 到 10ms。按键稳定闭合时间的长短则由操作人员的按键动作决定的,一般为零点几秒至数秒。按键抖动会引起按键被误读多次。为了确保 CPU 对按键的一次闭合仅作一次处理,必须进行消抖。
按键消抖有两种方式:
硬件消抖
RS触发器,图中两个“与非”门构成一个RS触发器。当按键未按下时,输出为0;当键按下时,输出为1。此时即使用按键的机械性能,使按键因弹性抖动而产生瞬时断开(抖动跳开B),只要按键不返回原始状态A,双稳态电路的状态不改变,输出保持为0,不会产生抖 ...
08动态数码管实验
数码管介绍
多位数码管简介
多位数码管,即两个或两个以上单个数码管并列集中在一起形成一体的数码管。当多位一体时,它们内部的公共端是独立的,而负责显示什么数字的段线(a-dp)全部是连接在一起的,独立的公共端可以控制多位一体中的哪一位数码管点亮,而连接在一起的段线可以控制这个能点亮数码管亮什么数字,通常我们把公共端叫做“位选线”,连接在一起的段线叫做“段选线”,有了这两个线后,通过单片机及外部驱动电路就可以控制任意的数码管显示任意的数字了。
数码管动态显示原理
多位数码管依然可以静态显示,但是显示时要么只显示一位数码管,要么多位同时显示相同内容。当多位数码管应用于某一系统时,它们的“位选”是可独立控制的,而“段选”是连接在一起的,我们可以通过位选信号控制哪几个数码管亮,而在同一时刻,位选选通的所有数码管上显示的数字始终都是一样的,因为它们的段选是连接在一起的,送入所有数码管的段选信号都是相同的,所以它们显示的数字必定一样,数码管的这种显示方法叫做静态显示。
而动态显示,就是利用减少段选线,分开位选线,利用位选线不同时选择通断,改变段选数据来实现的。比如在第一次选中第一位数码管 ...
07静态数码管实验
数码管介绍
数码管简介
**数码管是一种半导体发光器件,其基本单元是发光二极管。**数码管也称 LED数码管,不同行业人士对数码管的称呼不一样,其实都是同样的产品。数码管按段数可分为七段数码管和八段数码管,八段数码管比七段数码管多一个发光二极管单元,也就是多一个小数点(DP),这个小数点可以更精确的表示数码管想要显示的内容;按能显示多少个(8)可分为 1 位、2 位、3 位、4 位、5 位、6 位、7 位等数码管。按发光二极管单元连接方式可分为共阳极数码管和共阴极数码管。
共阳极数码管:是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的数码管,共阳数码管在应用时应将公共极COM 接到+5V,当某一字段发光二极管的不亮。阴极为低电平时,相应字段就点亮,当某一字段的阴极为高电平时,相应字段就不亮
共阴极数码管:是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管,共阴数码管在应用时应将公共极 COM 接到地线 GND 上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮,当某一字段的阳极为低电平时,相应字段就不亮。
数码管实物图
数码管显示原理
不管将 ...
06蜂鸣器实验
蜂鸣器介绍
蜂鸣器是一种一体化结构的电子讯响器,采用直流电压供电,广泛应用于计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件。蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。
压电式蜂鸣器: 主要由多谐振荡器、压电蜂鸣片、阻抗匹配器及共鸣箱、外壳等组成。多谐振荡器 由晶体管或集成电路构成,当接通电源后(1.5-15V直流工作电压),多谐振荡器起振,输出1.5-5kHZ的音频信号,阻抗匹配器推动压电蜂鸣片发声。
电磁式蜂鸣器:由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。接通电源后,振荡器产生的音频信号电流通过电磁线圈,使电磁线圈产生磁场,振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。
压电式蜂鸣器发声,需提供一定频率的脉冲信号;电磁式蜂鸣器发声只需提供电源即可
当前开发板上使用的蜂鸣器是无源蜂鸣器,属于压电式蜂鸣器类型。**这里说的有源和无源,并不是指电源的意思,而是指蜂鸣器内部是否含有振荡电路,有源蜂鸣器内部自带振荡电路,只需提供电源即可发声,而无源蜂鸣器则需提供一定频率的脉冲信号才能发声,频率大小通常在 1.5 ...
04Docker容器
启动容器
启动容器有两种方式,一种是基于镜像新建一个容器并启动,另外一个是将在终止状态(exited)的容器重新启动。
新建并启动
所需要的命令主要为docker run,例如,下面的命令输出"Hello World",之后终止容器
12$ docker run -t -i ubuntu:18.04 /bin/bashroot@af8bae53bdd3:/#
其中,-t 选项让Docker分配一个伪终端(pseudo-tty)并绑定到容器的标准输入上, -i 则让容器的标准输入保持打开。
当利用 docker run 来创建容器时,Docker 在后台运行的标准操作包括:
检查本地是否存在指定的镜像,不存在就从 registry 下载
利用镜像创建并启动一个容器
分配一个文件系统,并在只读的镜像层外面挂载一层可读写层
从宿主主机配置的网桥接口中桥接一个虚拟接口到容器中去
从地址池配置一个 ip 地址给容器
执行用户指定的应用程序
执行完毕后容器被终止
启动已终止容器
以利用 docker container start 命令,直接将一个已经终 ...
03Dockerfile指令详解
FROM指定基础镜像
所谓定制镜像,那一定是以一个镜像为基础,在其上进行定制。就像我们之前运行了一个 nginx 镜像的容器,再进行修改一样,基础镜像是必须指定的。而 FROM 就是指定 基础镜像,因此一个 Dockerfile 中 FROM 是必备的指令,并且必须是第一条指令。
在 Docker Hub 上有非常多的高质量的官方镜像,有可以直接拿来使用的服务类的镜像,如 nginx、redis、mongo、mysql、httpd、php、tomcat 等;也有一些方便开发、构建、运行各种语言应用的镜像,如 node、openjdk、python、ruby、golang 等。可以在其中寻找一个最符合我们最终目标的镜像为基础镜像进行定制。
如果没有找到对应服务的镜像,官方镜像中还提供了一些更为基础的操作系统镜像,如 ubuntu、debian、centos、fedora、alpine 等,这些操作系统的软件库为我们提供了更广阔的扩展空间。
除了选择现有镜像为基础镜像外,Docker 还存在一个特殊的镜像,名为 scratch。这个镜像是虚拟的概念,并不实际存在,它表示一个 ...
02Docker镜像
镜像
获取镜像
从 Docker 镜像仓库获取镜像的命令是 docker pull。其命令格式为:
1$ docker pull [选项] [Docker Registry 地址[:端口号]/]仓库名[:标签]
具体的选项可以通过 docker pull --help 命令看到,这里我们说一下镜像名称的格式。
Docker 镜像仓库地址:地址的格式一般是 <域名/IP>[:端口号]。默认地址是 Docker Hub(docker.io)。
仓库名:如之前所说,这里的仓库名是两段式名称,即 <用户名>/<软件名>。对于 Docker Hub,如果不给出用户名,则默认为 library,也就是官方镜像。
12345678$ docker pull ubuntu:18.0418.04: Pulling from library/ubuntu92dc2a97ff99: Pull completebe13a9d27eb8: Pull completec8299583700a: Pull completeDigest: sha256:4bc3ae65 ...